
ht. J. Heat Moss Trans&r. Vol. 18. pp. 79-86. Pergamon Press 1975. Printed in Great Britain 

A, 

6 

B, 
b, 
C, D, 
E, 

F, 
Gr, 

L, 
4 

Nu, 
pr, 
P. 

43 

R, 

r, 

T 

IMPROVING HEAT TRANSFER IN STEAM-HEATED 
FAST ROTATING PAPER DRYING DRUMS 

WILFRIED ROETZEL* 

Chemical Engineering Research Group, Council for Scientific and Industrial Research, 
Pretoria, South Africa 

(Received 5 March 1974) 

Abstract-Condensate film thickness and, consequently, heat transfer depend on the method of 
condensate removal. Replacing the conventional rotating condensate syphon by a stationary one with 
the tip running in a circumferential groove the high pressure drop in the rotating syphon is avoided 
while film thickness is reduced somewhat. 

A more significant increase in heat transfer may be obtained by giving the inside surface in the drum 
a slight slope. For the case that this conical surface is circularly curved in the axial direction equations 
are presented for the calculation of local and mean film thicknesses. These show that for the desirable 
virtually uniform heat flux even with very slight curvatures steam side heat-transfer coefficients can be 
expected to be several times better than on a cylindrical surface. 

The developed equations are useful also for other systems of condensation where the acceleration 
along the condensate flow path is proportional to the flow length. The equations can also be applied 

for corresponding cases of free convection and film evaporation. 

NOMENCLATURE 

dimensionless group defined by (5) or (40), 
respectively; 
exponent; 
breadth of flow path; 
acceleration; 
integration constants; 
dimensionless group defined by (20) or (41), 
respectively; 
dimensionless group defined by (27); 
general Grashof number defined by (12) 

of [81; 
gravitational acceleration; 
latent heat of condensation; 
numerical value representing a definite 
integral; 
total flow length of condensate; 
local condensate flow rate; 
mean Nusselt number for constant heat flux; 
general Prandtl number defined by (9) of [8]; 
pressure; 
constant heat flux per unit time and area; 
radius of curvature in condensate flow 
direction; 
mean inside radius of drum or minimal 
distance of rotating wall from axis of 
rotation; 
temperature; 

*Present address: Bayer AG, Verfahrenstechnik R150, 
415 Krefeld 11, F.R. Germany. 

u, dummy variable defined by (32) or (36); 

u, dummy variable defined by (33) or (37); 

X, variable flow length of condensate film; 

Y, local thickness of condensate film; 

Z, substitution variable defined by (15). 

Greek symbols 

a, mean heat-transfer coefficient for constant 
heat flux and linear temperature profile 
in the film; 

A, finite difference; 

I, thermal conductivity of condensate; 

v, mean kinematic viscosity of condensate; 

L dimensionless flow length of condensate 
defined by (4); 

P? density of condensate; 

4, dimensionless thickness of the condensate 
film defined by (3); 

*> relative dimensionless film thickness defined 

by (23) ; 
a, angular velocity of rotating system. 

Subscripts 

0, at the point where < = 0; 

1, at the point where < = 1; 

a, for R = co; 

m, mean value; 
min, minimal; 

n, normal to the wall; 
s, at saturation conditions; 
K usual. 
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1. INTRODUCTlOh 

IN PAPER production drying is economically an im- 
portant step and in the past significant research and 
development have been devoted to this operation. 

Han [I] has presented a detailed review on the present 
state of the art with reference to all important prior 

publications. 
Considerable effort has been made to improve the 

heat transfer in fast rotating steam dryers because of 

its direct effect on the production rate. However, the 
means are somewhat restricted because a uniform heat 

flux is desirable and, of course, the manufacturing 
costs of the drying drums must be kept within reason. 
Under rimming conditions which are considered in 

this paper the heat transfer is determined mainly by the 
method of condensate removal. With a stationary 
syphon the heat transfer is relatively poor because the 
gap between the syphon’s tip and the moving inside 
surface cannot be made very small (Fig. 1). A con- 
siderable decrease of the gap (however. not to zero) 

Condensate 

Condensate film 1 \ %phon 

FIG. 1. Conventional steam-heated fast rotating 
drum. 

causing an improvement in heat transfer has been 
obtained by a rotating syphon with an inlet shoe being 
held rigidly against the inside dryer surface. The dis- 

advantage of this construction is a high pressure drop 
caused by the centrifugal forces in the rotating syphon. 

In this paper another construction is proposed. The 

condensate is collected in a circumferential groove in 
the inside surface and from there it is removed by 
means of a stationary syphon with its tip in the groove. 
The high pressure drop of the rotating syphon is now 
avoided. The mean film thickness is slightly smaller 
than with a rotating syphon because the condensate 

is sucked off from a lower level. A further more 
effective improvement of the heat-transfer coefficient 

can be obtained by using a conical shape of the inside 
surface so that the condensate can flow better “down” 
to the collecting groove. The slope of the cone can 
be constant or can change according to any desirable 
function of the flow length, e.g. it can increase pro- 
portional to the flow path, which case is being 
investigated theoretically in this paper (Fig. 2). 

Groove/ 

FIG. 2. Drum with two curved conical 
sections and one sampling groove. 

2. DERIVATION OF THE DIFFERENTIAL EQUATION 

Figure 3 shows the co-ordinate system used in the 

subsequent analysis. The co-ordinate x is the variable 

flow path along the surface. Because of the slope of 
the surface with respect to the axis of rotation the 

centrifugal acceleration b forms an angle with the 
x-axis. Neglecting the gravity forces Fig. 3 is rep- 
resentative of the entire circumference. Assuming a 

dx Centre of buoyancy 

FIG. 3. The condensate film in the 
acceleration field. 

parabolic Nusselt velocity profile in the film, [2] and 
[3], yields the energy balance 

3.ti.v 
b,.p.dx-h,.p.f.dy = - dw 

B.y3 .’ (1) 

The mechanical energy per volume produced by 
moving the centre of buoyancy is transferred to 
frictional heat (not kinetic energy). The factor 4 in the 
middle specific energy term takes into account that the 

centre of buoyancy is situated at one half of the 
height (y). For b, = 0 (1) is in accordance with equation 
(12) of [3] where no gravity forces normal to the wall 

do occur. 
The variation of viscosity with temperature can be 

taken into account by using the reference temperature 
of Drew and Gregorig (three-quarters of the wall 
temperature plus one-quarter of the film surface 
temperature) as shown in [3]. 

For paper drying a uniform heat flux is desirable 
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which can be expressed by the local condensate flow 
rate and the variable flow length 

ti.h 
4=E’ 

Introducing into (1) the dimensionless film thickness 
and the dimensionless flow path 

(3) 

+-; (4) 

as well as the dimensionless group 

A = b,.p.h.L2 

6.v.q 

where 

b,=w”.r (6) 

yields the dimensionless differential equation 

__=2 !!&I d4 

dl; ‘b, A 4” 

b, can be any function of the flow path. For our case 
of constant curvature and small ratios of L/R 

b.x L 
b, R" 

and b, can be regarded as constant. 
Introducing (8) into (7) yields 

Separating the variables and integrating gives: 

I W 
2.L 1 

= $.<2+C. 
~- 

R zp 

3. INFINITE RADIUS OF CURVATURE 

To begin with the limiting case 

L 
-=o 
R 

(8) 

(9) 

(IO) 

(11) 

is considered. The inside surface is exactly cylindrical 
as in the conventional drying drums. Our case differs 
from that of a conventional stationary syphon only 
by the boundary condition of the point x = L. Im- 
mediately following the edge of the groove the film 
thickness y is zero and for the calculation it may be 
assumed y = 0 for x = L (especially if the edge if 
rounded). In the conventional case the film thickness 
is there equal to the distance of the syphon from the 
wall. 

When a rotating syphon is applied condensate is 
removed only in one region of the cylinder requiring 
a multidirectional flow pattern for the condensate. 
With a stationary syphon in a groove condensate is 
removed from the whole circumference of the groove. 
In our case the boundary condition is 

5=1--+f#)=o. (12) 

Integrating (10) taking into account (11) and (12) gives 

2 114 

q!J = 2 

0 
.(l-52)1’4 (13) 

which is plotted in Fig. 4. 

FIG. 4. Local relative film thickness for 
L/R = 0 according to (13). 

In the case of non-uniform heat flux but constant 
temperature difference a mean heat-transfer coefficient, 
arrived at by an integration of the local coefficient 
over the area, is usually applied. 

In our case of constant heat flux with changing 
heat-transfer resistance and temperature difference, 
however, it is more consistent and reasonable to intro- 
duce a mean resistance together with a mean tem- 
perature difference by integrating both over the area. 
For this mean resistance the mean film thickness is 
needed : 

The definite integral I [defined by (13) and (14)] can 
be solved by the substitution 

5 = cosz (15) 

which leads to the following known {see [4], p. 100, 
equation (43)} integral: 

==a/2 

z= 

s 
(sin z)312 dz = $. 4~. g = 0.87402. (16) 

r=” 
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Substituting I in (14) according to (16) and introducing Taking this into account when combining (24) and (25) 
the mean Nu number, which is reasonable because a and introducing the dimensionless group 
linear temperature profile can be assumed in the film, 113 

Nu=-t 
(27) 

&I 
(17) 

gives 
gives for our case of infinite radius of curvature 

Nu, = (0.86. A)1’4. 

This equation is applicable when the heat flux 4 is 
given. However, frequently the mean temperature 
difference AT, is given and then the following approach 
is more convenient. Expressing the heat flux as follows 

4= N+.AT m (19) 

and defining the dimensionless group 

(20) 

arctarry-arctan$)11”*. (28) 

For a given value of F the dimensionless flow length 
can be calculated for any value of the relative film 
thickness J/. The local relative thickness $ can be 
calculated by iteration. Figure 5 shows some curves 
according to (28) for various values of F. With in- 
creasing values of F the relative film thickness decreases 

A=;. 

Equations (19)-(21) are valid for any value of R. 
Replacing A in (18) according to (21) with Nu = Nu, 
and solving for Nu, yields 

Nu, = (0.86. E)“5. (22) 

This equation should be used instead of (18), when 
the mean temperature is given. 

4. FINITE RADIUS OF CURVATURE 

For simplification of the integration in (10) the 
relative dimensionless film thickness is introduced 

with which (10) turns to 

5*+2.C= -+-)?J^~. (24) 

According to [S] p. 32, Section 2.1.3.1.2, and p. 31, 
Section 1.2.1, the integration yields 

+$.arctan2’$~‘+D. (25) 

The integration constants D in (25) and C in (24) must 
satisfy the boundary condition according to (12) 

l=l-$=O. (26) 

FIG. 5. Local relative film thickness 
according to (28) for various values 

of F. 

and for F = co, $ = 0. In the other limiting case of 
F = 0 the relative thickness II/ = 1. The film thickness 
is then constant over the surface which means also a 
constant heat flux for constant temperature difference. 
For the calculation of the mean heat-transfer resistance, 
as discussed before, and for the mean NM number 
defined by (17) one needs the integrated value of $ : 

This integral can be evaluated by the righthand integral 
if t,GO is that value for which 

two) = 0. (30) 

Thus for any value of F the mean value I(/, can be 
calculated by a numerical stepwise integration of (28) 
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according to (29). The maximum value of Ijl,. is unity. 
Substituting tj in (23) by $,,, = 1 yields the maximum 
value of #,,, and thus with (17) 
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Table 1. Dimensionlm group u as function of u 
according to the numerical integration (32) and the 

approximation (34) 

(31) 

The reciprocal value of II/, can then also be expressed by 

1 Nu 
-=----_a 
*Pn Ntai” 

(32) 

which variable is only a function of F. Instead of the 
variable dimensionless group F’one can also use the 
ratio of Nu, and NQ, from (18) and (31). 

2 = (0.86. A)lj4. 
l/3 

I” 

= 0.809. F’14 = t_~ (33) 

because it is only a function of F. The variables u and v 
have the advantage that u has the limiting values of 
u = 1 or u = u for u = 0 or v = co, respectively, as 
shown in Fig. 6. For given values of LJR and A the 

1 

V 

FIG. 6. Functional dependence of u on u 
according to (32) and (33). 

value of v can be determined and from Fig. 6 the 
value of u and from u the Nu number can be deter- 
mined. The curve u vs v in Fig. 6 which was determined 
by the numerical integrations described above can be 
approximated closely by 

tl = (1+“31/7)7/31 (34) 

as shown in Table 1. Substituting u and v by the 
Nu ratios according to (32) and (33), solving for Nu 
and substituting Nu, and Nu,,,~~ according to (18) and 
(31) gives: 

Nu= 2.L.A 31’21 

[( > I 

7131 

R 
+ (0.86. Ap2* (35) 

v, (33) U, (32) u, (34) 
Relative error 

(%) 

0.8036 1.0650 1.0754 +0.97 
0.8928 1.1058 1.1128 +064 
09541 1.1404 1.1437 - 0.02 
1GOOO 1.1692 1.1694 + 0.02 
1.0305 1.1896 1.1877 -0.16 
1.0995 1.2388 1.2323 -0.52 
1.1439 1.2723 1.2632 -0.72 
1.2099 1.3243 1.3117 -0.95 
1.4387 15188 1.4991 - 1.30 
2.5584 2.5834 2.5673 -062 
45495 4.5514 4.5508 -0.15 
8.0903 8.0928 8.0905 - 0.03 

Thus the Nu number can be calculated for given values 
of L/R and A. For an infinite radius of curvature R 
(35) turns to (18). For a finite radius and with increasing 
values of A the first term in (35) becomes controlling 
and (35) approaches (31) with a constant film thickness. 
As (18) also (35) is applicable when the heat flux 4 
is given. 

We now consider the case of a given mean tem- 
peraturedifference. Substituting Nu,,,,in (32) according 
to (31) and replacing A according to (21) gives 

/ D \ l/3 . Nu413 (36) 

and now w is not proportional to Nu but to Nu4”. 
Combining (21) and (33) yields accordingly 

v=o.764.(;J’3.(;)“12 (37) 

and v is now proportional to Nu”r2. For a given pair 
L/R and E one can find the Nu number by trial and 
error. If u and v according to (36) and (37) fit the exact 
curve u vs v in Fig. 6, the estimated value of Nu was 
right. A fast converging method is to estimate a value 
of Nu and calculate v according to (37). Then a value 
of u can be found according to the curve in Fig. 6. 
With this value of u and (36) one can find an improved 
value of Nu with which to start again. 

However, this method is very inconvenient and 
therefore a simple approximation is developed. Un- 
fortunately, using (35) after substituting A according 
to (21) brings no advantage because the equation is 
then implicit in Nu and iterations are necessary. Only 
in the two limiting cases of Nu, and Nu,,,~, can this 
equation be solved for Nu yielding in the first case Nu, 
according to (22) and in the other case 
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This equation can be found through (36) with u = 1 
or by combining (21) and (31). With the two limiting 
functions (22) and (38) the following equation similar 
to (35) was developed 

2.L.E 23’16 
Nu= ~ 

[( > R 
+ (0.86. E)23’20 1 

4/23 

(39) 

Thus the Nu number can also be directly determined 
when the ratio L/R and the value of the dimensionless 
group E can be calculated from the given data. The 
accuracy of (39) is about the same as that of (35) 
(see Table 1). In the region where both limiting func- 
tions are of the same order of magnitude, errors of 
about 1 per cent may arise. With respect to the 
curvature the validity range is estimated to be 
0 < LfR < 0.2. 

In the limiting case Nu = Nu,,,~, the Nu number is 
proportional to L, as follows from (5), (20), (31) and 
(38), and the heat-transfer coefficient is constant over 
the surface and independent of L. 

5. NUMERICAL RESULTS AND CONCLUSIONS 

To demonstrate the effect of curvature on the heat- 
transfer coefficient CI = Nu. n/L some numerical results 
obtained from (35) and (39) are presented. We consider 
a section with a total flow length of L = 1 m and 
various small ratios of L/R. The circumferential velocity 
of the drum w . r = 10 m/s and the radius r = 0.75 m. 
The saturation temperature of the steam inside the 
drum is taken as T, = 150°C which corresponds to a 
pressure of pS = 476 bar [6]. The driving mean tem- 
perature difference is assumed to be AT, = 10°C. For 
simplification all properties are evaluated at the satu- 
ration temperature. With the properties according to 
[6] one finds that using (6) and (20) the value 
E = 3.100 x lO”j. In Table 2, heat-transfer coefficients 
according to (38) and (39) are presented for various 
values of L/R. Further, the maximum absolute change 
of the drum radius Ar equal to the change of wall 
thickness is given in the table (for small values of 
L/R: Ar/L = L/2R). In Table 3, similar results are 
presented, however, for the case of a constant value 
of A = 1013 using (31) and (35). The ratios u/u, 
indicate the improvement in heat transfer due to the 

Table 2. Heat-transfer coefficients for E = 3.1 x lOI 
and various ratios of L/R 

L/R Ar amin a 
(mm) (W/m’“C) (W/m’“C) ah, ala. 

0 0 0 1319 1.00 1.55 
0.001 0.5 1919 1956 1.48 2.30 
oGO2 1.0 2282 2299 1.74 2.70 
0.005 2.5 2870 2876 2.18 3.37 
0.010 5.0 3413 3416 2.59 4.01 

Table 3. Heat-transfer coefficients for A = lOi 
and various ratios for L/R 

amin 

L’R (tZ) (W/m* “C) (W/m”’ “C) ala, a/a, 

0 0 0 1110 1 .oo 1.30 
O+Ol 0.5 1857 1909 1.72 2.24 
oQO2 1.0 2339 2363 2.33 2.77 
oGI5 2.5 3175 3183 2.87 3.74 
0.010 5.0 4000 4004 3.61 4.70 

curvature. The ratios CL/C(, indicate the improvement 
in the heat-transfer coefficient compared to the usual 
value at high speed drums being 852.15 W/m2 “C 
(150Btu/ft2 hdegF) according to Table 1 of [l]. 

The results of Tables 2 and 3 clearly demonstrate 
that even with very small curvatures and changes of 
wall thickness the heat-transfer coefficient increases 
considerably compared with the case of a cylindrical 
shape and, as expected, increases even more when 
compared with the usual cylindrical case with a rotating 
syphon. 

Comparing CI and %i, reveals that in the region of 
remarkable heat-transfer improvement c( z a,in and the 
local film resistance is practically constant. This gives 
together with the small change of wall thickness (com- 
pared to the mean thickness of a few centimetres) a 
virtually constant heat flux as desired for paper drying 
and as assumed for the derivation of (7). 

Evaluating the heat-transfer resistance presented in 
Table 1 of [I] leads to the conclusion that by means 
of the condensate collecting groove and the curvature 
of the wall proposed in this paper, the overall heat- 
transfer coefficient could be increased by 20-40 per 
cent. The improvement would be even better when 
using a wall material with a higher conductivity. 

The effect is influenced also by the length L or the 
number of sections applied in the drum. 

6. EXTENSION TO OTHER CASES 

The equations derived above are valid also for other 
cases in which the same type of differential equation 
(9) is valid. 

Regarding a curved disk of the radius L and the 
radius of curvature R in a gravity field b, = g on which 
the condensate flows in radial direction yields the same 
differential equation. The only difference is a numerical 
factor in the dimensionless group A. Thus (35) and (39) 
are also valid for a curved disk in a gravity field when 
the following dimensionless groups are used : 

A= b,,.p.h.L’ 

3.v.4 

E = b,.p.h.L3 

3.v.i.AT; 
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The same applies to a rotating flat disk in a coaxial 
gravity field (only radial flow neglecting coriolis ac- 
celeration), when the radius of curvature is replaced 
according to 
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acceleration in flow direction 

b,=b,,.c (46) 

where bxi is the value at the end of the flow path. 
Substituting b, in (45) according to (46) and solving 
for 4 gives the local dimensionless film thickness. R=b, 

co2 ’ 

There are no restrictions with respect to the range of 
L/R. This case, however, without a gravity force normal 
to the disk, was treated by Sparrow and Gregg [7] 
and later by Dhir and Lienhard [8] yielding the 
limiting value Nu,,,~, according to (38). 

In [S] also a rotating plate shown in Fig. 7 was 
treated neglecting the forces normal to the wall. Also 

FIG. 7. Condensation on a 
rotating wall. 

for this case our equations are valid using the original 
definitions (5) and (20) for A and E together with (6) 
and (42). Combining (6) and (42) gives 

R=r (43) 

which can also be applied for any range of L/R. Using 
(6) implies that the coriolis acceleration is negligible. 
This is a good approximation because in the sym- 
metrical case of Fig. 7 these forces have the opposite 
effect on the two flow paths of condensate. For high 
values of A and E the limiting value Na,i” is 
approached, which is the solution presented in [S]. 

The applications discussed above are based on the 
differential equation (9). In the following another exten- 
sion of (35) and (39) is proposed which is not based on 
(9) but only on (7) and a more general function for b, 

than (8). We make use of the fact that the limiting 
function Nu, according to (31) is the solution of (9) 
or (7) and (8) for the case of 

b, = 0 (44) 

which also compares with the results of [7] and [S 
Introducing (44) in (7) gives 

0=2 b _!+,_i 
‘x A+3 

where b, cancels against b, in A. We now consider 
instead of (8) the more general function for the 

113 
5” -N/3 

(47) 

By integrating r#~ one finds the mean film thickness. 
The reciprocal value according to (17) is then the 
limiting value N~i” which can be expressed by (31) 
or (38) when the ratio L/R is replaced by 

Introducing (48) also in (35) and (39) yields an approxi- 
mation equation for the general case described by (46). 
This approach, however, should be subject to another 
more detailed investigation which is beyond the scope 
of this paper. Thus (35) and (39) can be used for quite a 
number of stationary or rotating condensing systems. 

In all cases discussed above (39) provides a good 
approximation when applied to the corresponding 
cases of film evaporation and free convection, provided 
the dimensionless groups Gr and Pr according to (12) 
and (9) of [9] are introduced. When the Gr number 
is formed with b, (not b as in [9]) (39) turns to 

Nu = [(;.;. Grn.Pr)19’i6 

1 
4/23 

+ (0.143. Gr,. Pr)23’20 (49) 

for the cases in which (5) and (20) are valid and to 

1 
4123 

+ (0.286. Gr, . Pr)23i20 (50) 

when (40) and (41) have to be applied. Corresponding 
cases (in any acceleration field) are cooling on the 
upper side and heating on the underside of a plate. 
With curved walls the presented heat-transfer equations 
describe transfer on the convex side. 
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TRANSFERT THERMIQUE POUR DES TAMBOURS DE SECHAGE DE PAPIER, 
CHAUFFES A LA VAPEUR ET A ROTATION RAPIDE 

R&sum&L’epaisseur du film d’un condensat et par consequent le transfert thermique, depend de la 
methode d’enlkement du condensat. Remplagnt le syphon rotatif conventionnel par un autre stationnaire 
avec l’ailette se deplagnt dans une gorge circonferentielle, la perte de pression &levee dans le syphon 
rotatif est supprimee tandis que I’epaisseur du film est sensiblement reduite. 

On peut obtenir un acroissement plus important du transfert de chaleur en donnant une leg&e pente 
a la surface interne du tambour. Dans le cas od cette surface conique est circulairement incurvee dans 
la direction axiale, on etablit des equations pour le calcul des epaisseurs locale et moyenne du film. On 
montre que pour un flux thermique uniforme don&, meme avec des courbures trts legeres, les coefficients 
de transfert du tote de la vapeur sont plusieurs fois plus grand que ceux sur une surface cylindrique. 

Les equations deceloppees sont miles aussi pour d’autres systemes de condensation oti I’acceleration le 
long de l’bcoulement de condensat est proportionnelle a la longueur d’ecoulement. Les equations peuvent 

&tre appliquees de m&me aux cas de I’evaporation en convection libre et en film. 

VERBESSERUNG DES WARMEUBERGANGS IN DAMPFBEHEIZTEN 
SCHNELL ROTIERENDEN PAPIERTROCKENTROMMELN 

Zummmenfassun-Die Kondensatfilmdicke und damit der Warmeiibergang hangen von der Art der 
Kondensatabfuhr ab. Das konventionelle rotierende KondensatabfluBrohr wird durch ein feststehendes 
ersetzt, dessen Miindung in eine umlaufende Sammelrinne hineinragt. Hierdurch wird der hohe 
Druckverlust im rotierenden Rohr vermieden und gleichzeitig die Filmdicke etwas verringert. 

Eine entscheidende Erhohung des Wkmetibergangs kann jedoch dadurch erreicht werden, dal) die 
Innenflache schwach konisch ausgefiihrt wird. Fiir den Fall, dal3 diese konische Innenwand in axialer 
Richtung kreisfiirmig gekriimmt ist, werden Gleichungen zur Berechnung der iirtlichen und mittleren 
Filmdicke angegeben. Diese zeigen, dal3 schon bei sehr schwachen Kriimmungen der Warmeiibergangs- 
koeffizient innen gegeniiber dem zylindrischen Fall bei praktisch konstantem WIrmefluB vervielfacht 
werden kann. 

Die entwickelten Gleichungen sind such brauchbar fur andere Kondensationsvorgange, bei denen 
die Beschleunigung in Kondensatflugrichtung proportional dem Strdmungsweg ist. Die Gleichungen 

sind such fiir entsprechende Fllle von freier Konvektion und Filmverdampfung anwendbar. 

MHTEHCM~MKAUM~ TEl-lJlOOEMEHA B HArPEBAEMbIX llAPOM CKOPOCTHblX 
6APABAHAX Afl5l CYUIKM EYMAl-M 

Atmorauwt- TonluiiHa meHKH KOHLteHCaTa ~,CnenOBaTenbHO, TennonepeHoc 3aBHCIIT or cnoco6a 

yRaJleHMSl KOHLleHCaTa. SaMeHa 06bl’iHOrO BpalUaIOLUerOC55 CH@OHa C KOHJQZHCaTOM He,TOL(BH~HbIM 

CW+OHOM C HaKOHe’iHWKOM, KOTOpblk LIBHXCZTCfl B KaHaBKC Ha BHyTwHH& lTOBepXHOCT&i 6apa6aua, 
Il03BOJlHna yCTpaHHTb 6Onbud ITe~IlaLl LlaBfleHWIl llpki HeKOTOpOM CHWKeHWII TO!Ul,CLHbI ITJIeHKW. 

Lonee 3HawiTenbHoe yeenmseHne Tennonepetioca MOXHO nonyrnrb, ecnu BHyTpeHHeii nosepx- 

HOCTti 6apa6aHa IlpctDaTb He6onbuOB HaKnOH. n~DCTaBfleHbl ypaBHeHHR nnR paCYkTa nOKanbHdi 

H CpenHek TOJllUWHbl nneHKw nna cnyvae, Korna KOHWYeCKaR l-lOB.ZpXHOCTb pacnonaraerca B OCeBOM 
HanpaBneHnn 6apa6aHa. 3Tki ypaBHeHWi nOKa3blBatOT, YTO nnff Tpe6yeMoro OnHoponHoro Tenno- 
BOrO “OroKa PaXe riper OYCHb He6OflbUOii KOHYCHOCTK K03@&WlCHTbl TenJlOnCpCHOCa CO CTOfJOHbl 

ITafNl MOrYT )‘BWlHWTbC!4 B HeCKOnbKO Pa3 B CpaBHeHHH C TellJlOO6MeHHOM B CJly’iae UMJIMHLlbM’ieCKO~ 

IlOBepXHOCTH. 

nOnyWHHbl.2 ypaBHeHWi MOryT 6blTb IIpLiMeHeHbl K LlpyIWM CllCTeMaM C KOHLICHCBTOM, Korna 
yckopenue anonb HanpaeneHwR noToKa Kouneucara nponopunotianbuo JutHue noi-0Ka. ~TH ypaeHe- 

HWIl MOI-yT 6blTb TSLK)KC npHMeHt?Hbl NIJI COOTBeTCTBYlOl.UWX CJQ’WeB cBO6OaHOii KOHBeKtICIH M 

ucnapetina nneHKH. 


