Int. J. Heat Mass Transfer. Vol. 18, pp. 79-86. Pergamon Press 1975. Printed in Great Britain

IMPROVING HEAT TRANSFER IN STEAM-HEATED
FAST ROTATING PAPER DRYING DRUMS

WILFRIED ROETZEL*

Chemical Engineering Research Group, Council for Scientific and Industrial Research,
Pretoria, South Africa

(Received 5 March 1974)

Abstract—Condensate film thickness and, consequently, heat transfer depend on the method of
condensate removal. Replacing the conventional rotating condensate syphon by a stationary one with
the tip running in a circumferential groove the high pressure drop in the rotating syphon is avoided
while film thickness is reduced somewhat.

A more significant increase in heat transfer may be obtained by giving the inside surface in the drum
a slight slope. For the case that this conical surface is circularly curved in the axial direction equations
are presented for the calculation of local and mean film thicknesses. These show that for the desirable
virtually uniform heat flux even with very slight curvatures steam side heat-transfer coefficients can be
expected to be several times better than on a cylindrical surface.

The developed equations are useful also for other systems of condensation where the acceleration
along the condensate flow path is proportional to the flow length. The equations can also be applied

for corresponding cases of free convection and film evaporation.

NOMENCLATURE u, dummy variable defined by (32) or (36);
A, dimensionless group defined by (5) or (40), v, dummy variable defined by (33) or (37);
respectively; X, variable flow length of condensate film;
a, exponent; Vs local thickness of condensate film;
B, breadth of flow path; z, substitution variable defined by (15).
b, acceleration;
C, D, integration constants; Greek symbols
E, dimensionless group defined by (20) or (41), a, mean heat-transfer coefficient for constant
respectively; heat flux and linear temperature profile
F, dimensionless group defined by (27); in the film;
Gr,  general Grashof number defined by (12) A, finite difference;
of [8]; A thermal conductivity of condensate;
g, gravitational acceleration; v, mean kinematic viscosity of condensate;
h, latent heat of condensation; £, dimensionless flow length of condensate
I, numerical value representing a definite defined by (4);
integral ; P, density of condensate;
L, total flow length of condensate; @, dimensionless thickness of the condensate
m, local condensate flow rate; film defined by (3);
Nu, mean Nusselt number for constant heat flux; ¥, relative dimensionless film thickness defined
Pr,  general Prandtl number defined by (9) of [8]; by (23);
D, pressure; , angular velocity of rotating system.
4, constant heat flux per unit time and area; .
R, radius of curvature in condensate flow Subscripts
direction; 0, at the point where ¢ = 0;
r, mean inside radius of drum or minimal 1, at the point where ¢ = 1;
distance of rotating wall from axis of o, forR=co;
rotation; m, mean value;
T, temperature; min, minimal;
n, normal to the wall;
*Present address: Bayer AG, Verfahrenstechnik R150, s, at saturation conditions;
415 Krefeld 11, F.R. Germany. u, usual.
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1. INTRODUCTION
IN pAPER production drying is economically an im-
portant step and in the past significant research and
development have been devoted to this operation.
Han [1] has presented a detailed review on the present
state of the art with reference to all important prior
publications.

Considerable effort has been made to improve the
heat transfer in fast rotating steam dryers because of
its direct effect on the production rate. However, the
means are somewhat restricted because a uniform heat
flux is desirable and, of course, the manufacturing
costs of the drying drums must be kept within reason.
Under rimming conditions which are considered in
this paper the heat transfer is determined mainly by the
method of condensate removal. With a stationary
syphon the heat transfer is relatively poor because the
gap between the syphon’s tip and the moving inside
surface cannot be made very small (Fig. 1). A con-
siderable decrease of the gap (however, not to zero)

Condensate

F1G. 1. Conventional steam-heated fast rotating
drum.

causing an improvement in heat transfer has been
obtained by a rotating syphon with an inlet shoe being
held rigidly against the inside dryer surface. The dis-
advantage of this construction is a high pressure drop
caused by the centrifugal forces in the rotating syphon.
In this paper another construction is proposed. The
condensate is collected in a circumferential groove in
the inside surface and from there it is removed by
means of a stationary syphon with its tip in the groove.
The high pressure drop of the rotating syphon is now
avoided. The mean film thickness is slightly smaller
than with a rotating syphon because the condensate
is sucked off from a lower level. A further more
effective improvement of the heat-transfer coefficient
can be obtained by using a conical shape of the inside
surface so that the condensate can flow better “down”
to the collecting groove. The slope of the cone can
be constant or can change according to any desirable
function of the flow length, e.g. it can increase pro-
portional to the flow path, which case is being
investigated theoretically in this paper (Fig. 2).
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F1G. 2. Drum with two curved conical
sections and one sampling groove.

2. DERIVATION OF THE DIFFERENTIAL EQUATION

Figure 3 shows the co-ordinate system used in the
subsequent analysis. The co-ordinate x is the variable
flow path along the surface. Because of the slope of
the surface with respect to the axis of rotation the
centrifugal acceleration b forms an angle with the
x-axis. Neglecting the gravity forces Fig. 3 is rep-
resentative of the entire circumference. Assuming a

y
dx Centre of buoyancy
y
bx
AY /ﬁ x
bp

F1G. 3. The condensate film in the
acceleration field.

parabolic Nusselt velocity profile in the film, [2] and
[3]. yields the energy balance

3.m.v
B.y*

be.p.dx—b,.p.5.dy = dx. (1)

The mechanical energy per volume produced by
moving the centre of buoyancy is transferred to
frictional heat (not kinetic energy). The factor % in the
middle specific energy term takes into account that the
centre of buoyancy is situated at one half of the
height (y). For b, = 0 (1) is in accordance with equation
(12) of [3] where no gravity forces normal to the wall
do occur.

The variation of viscosity with temperature can be
taken into account by using the reference temperature
of Drew and Gregorig (three-quarters of the wall
temperature plus one-quarter of the film surface
temperature) as shown in [3].

For paper drying a uniform heat flux is desirable
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which can be expressed by the local condensate flow
rate and the variable flow length

m.h
j=—. 2
i=5= @
Introducing into (1) the dimensionless film thickness

and the dimensionless flow path

y
= ()
%
i=T @
as well as the dimensionless group
2
ST g
where
b, =w?.r ©)
yields the dimensionless differential equation
4 _ 2 b 1 ¢ )

d¢ ~ 7'b,
b, can be any function of the fiow path. For our case

of constant curvature and small ratios of L/R

< ®

nd b, can be re.

ana Up Vall UV LV,

Introducing (8) into (7) yields

— =& —- . 9
d¢ R A.¢° ) ©
Separating the variables and integrating gives:
dd) 1 2
——— = C. 1
f2 T 3.8+ (10)
R A.4°
3. INFINITE RADIUS OF CURVATURE
To begin with the limiting case
L
—=0 11
R (11

is considered. The inside surface is exactly cylindrical
as in the conventional drying drums. Our case differs
from that of a conventional stationary syphon only
by the boundary condition of the point x = L. Im-
mediately following the edge of the groove the film
thickness y is zero and for the calculation it may be
assumed y =0 for x = L (especially if the edge if
rounded). In the conventional case the film thickness
is there equal to the distance of the syphon from the
wall.

HMT Vol. 18, No. 1 —F

When a rotating syphon is applied condensate is
removed only in one region of the cylinder requiring

a multidirectional flow pattern for the condensate.

With a stationary syphon in a groove condensate is
removed from the whole circumference of the groove.

In our case the boundary condition is
E=1-¢=0. (12)

Integrating (10) taking into account (11) and (12) gives

s=(2\" 4

p={") -y (13)
\4)
which is plotted in Fig. 4.
, \

L
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F1G. 4. Local relative film thickness for
L/R = 0 according to (13).

In the case of non-uniform heat flux but constant
temperature difference a mean heat-transfer coefficient,
arrived at by an integration of the local coefficient
over the area, is usually applied.

In our case of constant heat flux with changing
heat-transfer resistance and temperature difference,
however, it is more consistent and reasonable to intro-
duce a mean resistance together with a mean tem-
perature difference by integrating both over the area.
For this mean resistance the mean film thickness is

needed:
é=1 1/4
[ oae-(2)"

Vs

The definite integral I [defined by (13) and (14)] can
be solved by the substitution

E=cosz (15)

which leads to the following known {see [4], p. 100,
equation (43)} integral:

*z=nj2
1=J
z=0

. I"5/'4
(sinz)¥?.dz = i

5. U=

= 0-87402. (16)
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Substituting I in (14) according to (16) and introducing
the mean Nu number, which is reasonable because a
linear temperature profile can be assumed in the film,

1
Nu = — 17
Pum
gives for our case of infinite radius of curvature
Nu,, = (0-86. 4)'/*. (18)

This equation is applicable when the heat flux 4 is
given. However, frequently the mean temperature
difference AT,, is given and then the following approach
is more convenient. Expressing the heat flux as follows

A
j = Nu.—.AT, 19
4=Nu.7 AT, (19)
and defining the dimensionless group
b,.p.h.L?
= 20
6.v.A.AT, (20)
gives
E
A=-——. 21
N @1

Equations (19)—(21) are valid for any value of R.
Replacing A in (18) according to (21) with Nu = Nu,,

and solving for Nu,, yields
Nu,, = (0-86. E)*/5. (22)

This equation should be used instead of (18), when
the mean temperature is given.

4. FINITE RADIUS OF CURVATURE

For simplification of the integration in (10) the
relative dimensionless film thickness is introduced

2.L.A\?
mo (BE4) @
with which (10) turns to
5 __5 R 1/3 w3d|//
£+2.C= L'<2.L.A) T (24)

According to [5] p. 32, Section 2.1.3.1.2, and p. 31,
Section 1.2.1, the integration yields

Y3 .dy Yr+y+1
jl—w3‘_w+%m(w—n’

+D.

1 2.
+—=.arctan '//;' ! (25)

NE J
The integration constants D in (25) and C in (24) must

satisfy the boundary condition according to (12)

E=1-y=0 (26)

Taking this into account when combining (24) and (25)
and introducing the dimensionless group

R R 73
F=—.
L (2.L.A>
gives

o pla et 1
5_{1 F.I:g‘ln o1 l//+\/3

2
2'3;1—arctan \_/13>:I}1/ . (28)

For a given value of F the dimensionless flow length
can be calculated for any value of the relative film
thickness . The local relative thickness y can be
calculated by iteration. Figure 5 shows some curves
according to (28) for various values of F. With in-
creasing values of F the relative film thickness decreases

27

X (arc tan

7]
/ —
/
'3
® w0* 102 |F=0
o | |10
0 ) /

Fi1G. 5. Local relative film thickness
according to (28) for various values
of F.

and for F = co, ¥ = 0. In the other limiting case of
F = 0 the relative thickness = 1. The film thickness
is then constant over the surface which means also a
constant heat flux for constant temperature difference.
For the calculation of the mean heat-transfer resistance,
as discussed before, and for the mean Nu number
defined by (17) one needs the integrated value of y:

V=40

&.dy. (29)

&=1
wm=f y.dé =
=0

w=0

This integral can be evaluated by the righthand integral
if Y is that value for which
EWo) = 0. (30)

Thus for any value of F the mean value ¢, can be
calculated by a numerical stepwise integration of (28)
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according to (29). The maximum value of y,, is unity.
Substituting ¢ in (23) by ¥, =1 yields the maximum
value of ¢,, and thus with (17)

2.L. A\
Nty = (T) (B
The reciprocal value of ,, can then also be expressed by
1 Nu
—= =u (32)
d’m N Unin

which variable is only a function of F. Instead of the
variable dimensionless group F one can also use the
ratio of Nu,, and Nu,,, from (18) and (31).

Nuy =(0'86.A)“4.(_i_>1/3

2.L.A4

=0809.F'" =y (33)
because it is only a function of F. The variables u and v
have the advantage that u has the limiting values of
u=1or u=v for v=0 or v= oo, respectively, as
shown in Fig. 6. For given values of L/R and A4 the

Umin

v

F1G. 6. Functional dependence of u on v
according to (32) and (33).

value of v can be determined and from Fig. 6 the
value of ¥ and from u the Nu number can be deter-
mined. The curve u vs v in Fig. 6 which was determined
by the numerical integrations described above can be
approximated closely by

u= (1+031/7)7/31 (34)

as shown in Table 1. Substituting u and v by the
Nu ratios according to (32) and (33), solving for Nu
and substituting Nu,, and Nu,,, according to (18) and
(31) gives:

L. A\ 7/31
Nu=[(2 R ) +(0-86.A)3”28J . (39

Table 1. Dimensionless group u as function of v
according to the numerical integration (32) and the
approximation (34)

v,(33) Relative error

©,(32) u, (34)

%)
0-8036 10650 1-0754 +097
0-8928 1-1058 1-1128 +0-64
09541 1-1404 1-1437 -002
1-06000 1-1692 1-1694 +0-02
1-0305 1:1896 1-1877 —016
1-0995 1-2388 1-2323 ~0-52
1-1439 12723 12632 =072
1-2099 1-3243 1-3117 —095
1-4387 1-5188 1-4991 —1:30
2:5584 25834 2:5673 —062
4-5495 4-5574 4-5508 ~015
80903 80928 80905 -003

Thus the Nu number can be calculated for given values
of L/R and A. For an infinite radius of curvature R
(35) turns to (18). For a finite radius and with increasing
values of A the first term in (35) becomes controlling
and (35) approaches (31) with a constant film thickness.
As (18) also (35) is applicable when the heat flux ¢
is given.

We now consider the case of a given mean tem-
perature difference. Substituting Nuy, in (32) according
to (31) and replacing 4 according to (21) gives

R 1 4/3
and now u is not proportional to Nu but to Nu*?.
Combining (21) and (33) yields accordingly
R 1/3 Nu 112
=074.[—]| .— 37
o (f) (F) @

and v is now proportional to Nu'/'?, For a given pair
L/R and E one can find the Nu number by trial and
error. If v and v according to (36) and (37) fit the exact
curve u vs v in Fig, 6, the estimated value of Nu was
right. A fast converging method is to estimate a value
of Nu and calculate v according to (37). Then a value
of u can be found according to the curve in Fig. 6.
With this value of u and (36) one can find an improved
value of Nu with which to start again.

However, this method is very inconvenient and
therefore a simple approximation is developed. Un-
fortunately, using (35) after substituting 4 according
to (21) brings no advantage because the equation is
then implicit in Nu and iterations are necessary. Only
in the two limiting cases of Nu, and Nu,,, can this
equation be solved for Nu yielding in the first case Nu,,
according to (22) and in the other case

2.L.E\"*
Nu=Numin=<——L—£> .

R (38)
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This equation can be found through (36) with u =1
or by combining (21) and (31). With the two limiting
functions (22) and (38) the following equation similar
to (35) was developed

9. L.E\23/16 4/23
Nu=|:< R > +(0-86.E)23/2°:| . (39

Thus the Nu number can also be directly determined
when the ratio L/R and the value of the dimensionless
group E can be calculated from the given data. The
accuracy of (39) is about the same as that of (35)
(see Table 1). In the region where both limiting func-
tions are of the same order of magnitude, errors of
about ! per cent may arise. With respect to the
curvature the validity range is estimated to be
0<L/R <02

In the limiting case Nu = Nu,,, the Nu number is
proportional to L, as follows from (5), (20}, (31) and
(38), and the heat-transfer coefficient is constant over
the surface and independent of L.

5. NUMERICAL RESULTS AND CONCLUSIONS

To demonstrate the effect of curvature on the heat-
transfer coefficient « = Nu. A/L some numerical results
obtained from (35) and (39) are presented. We consider
a section with a total flow length of L =1m and
various small ratios of L/R. The circumferential velocity
of the drum w.r = 10m/s and the radius r = 0-75m.
The saturation temperature of the steam inside the
drum is taken as T; = 150°C which corresponds to a
pressure of p, = 4-76 bar [6]. The driving mean tem-
perature difference is assumed to be AT, = 10°C. For
simplification all properties are evaluated at the satu-
ration temperature. With the properties according to
[6] one finds that using (6) and (20) the value
E = 3-100 x 106, In Table 2, heat-transfer coefficients
according to (38) and (39) are presented for various
values of L/R. Further, the maximum absolute change
of the drum radius Ar equal to the change of wall
thickness is given in the table (for small values of
L/R: Ar/L = L/2R). In Table 3, similar results are
presented, however, for the case of a constant value
of A =10'% using (31) and (35). The ratios a/u,
indicate the improvement in heat transfer due to the

Table 2. Heat-transfer coefficients for E = 3-1 x 1016
and various ratios of L/R

Ar Omin o
L/R (mm) (W/mZ oC) (W/mz oC) a/“m “/au
0 0 0 1319 1-:00 1-55
0-001 05 1919 1956 1-48 2:30
0-002 1-0 2282 2299 1-74 2:70
0-005 25 2870 2876 218 337
0-010 50 3413 3416 2-59 401

Table 3. Heat-transfer coefficients for 4 = 1013
and various ratios for L/R

Ar Omin o
L/R (mm) (W/m2 oc) (W/mz oC) a/aoo a/au
0 0 0 1110 1-00 1-30
0-001 05 1857 1909 1-72 224
0-002 1-0 2339 2363 2:33 277
0-005 2:5 3175 3183 2-87 374
0-010 50 4000 4004 3-61 470

curvature. The ratios «/o, indicate the improvement
in the heat-transfer coefficient compared to the usual
value at high speed drums being 852-15W/m?2°C
(150 Btu/ft> hdegF) according to Table 1 of [1].

The results of Tables 2 and 3 clearly demonstrate
that even with very small curvatures and changes of
wall thickness the heat-transfer coefficient increases
considerably compared with the case of a cylindrical
shape and, as expected, increases even more when
compared with the usual cylindrical case with a rotating
syphon.

Comparing « and a,,, reveals that in the region of
remarkable heat-transfer improvement &« ~ ,,;, and the
local film resistance is practically constant. This gives
together with the small change of wall thickness (com-
pared to the mean thickness of a few centimetres) a
virtually constant heat flux as desired for paper drying
and as assumed for the derivation of (7).

Evaluating the heat-transfer resistance presented in
Table 1 of [1] leads to the conclusion that by means
of the condensate collecting groove and the curvature
of the wall proposed in this paper, the overall heat-
transfer coefficient could be increased by 20-40 per
cent. The improvement would be even better when
using a wall material with a higher conductivity.

The effect is influenced also by the length L or the
number of sections applied in the drum.

6. EXTENSION TO OTHER CASES

The equations derived above are valid also for other
cases in which the same type of differential equation
(9) is valid.

Regarding a curved disk of the radius L and the
radius of curvature R in a gravity field b, = g on which
the condensate flows in radial direction yields the same
differential equation. The only difference is a numerical
factor in the dimensionless group 4. Thus (35) and (39)
are also valid for a curved disk in a gravity field when
the following dimensionless groups are used:

_byp.h L2
T 3.

_by.p.h. D
T 3.v.AAT,

A (40)

(41)
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The same applies to a rotating flat disk in a coaxial
gravity field (only radial flow neglecting coriolis ac-
celeration), when the radius of curvature is replaced
according to

42)

There are no restrictions with respect to the range of
L/R. This case, however, without a gravity force normal
to the disk, was treated by Sparrow and Gregg [7]
and later by Dhir and Lienhard [8] yielding the
limiting value Nu,,;, according to (38).

In [8] also a rotating plate shown in Fig. 7 was
treated neglecting the forces normal to the wall. Also

F1G. 7. Condensation on a
rotating wall.

for this case our equations are valid using the original
definitions (5) and (20) for 4 and E together with (6)
and (42). Combining (6) and (42) gives

R=r 43)

which can also be applied for any range of L/R. Using
(6) implies that the coriolis acceleration is negligible.
This is a good approximation because in the sym-
metrical case of Fig. 7 these forces have the opposite
effect on the two flow paths of condensate. For high
values of A and E the limiting value Nup, is
approached, which is the solution presented in [8].

The applications discussed above are based on the
differential equation (9). In the following another exten-
sion of (35) and (39) is proposed which is not based on
(9) but only on (7) and a more general function for b,
than (8). We make use of the fact that the limiting
function Nu,, according to (31) is the solution of (9)
or (7) and (8) for the case of

b, =0 (44)
which also compares with the results of [7] and {8].
Introducing (44) in (7) gives

0=2.p b, &

=2bm s

where b, cancels against b, in 4. We now consider
instead of (8) the more general function for the

45)

acceleration in flow direction
bx = bxl . éa (46)

where b,, is the value at the end of the flow path.
Substituting b, in (45) according to (46) and solving
for ¢ gives the local dimensionless film thickness.

b 1/3 5
= " a3
o=(aim)

By integrating ¢ one finds the mean film thickness.
The reciprocal value according to (17) is then the
limiting value Nug,, which can be expressed by (31)
or (38) when the ratio L/R is replaced by

L (4-a\’ by
R ( 3 ) b,
Introducing (48) also in (35) and (39) yields an approxi-
mation equation for the general case described by (46).
This approach, however, should be subject to another
more detailed investigation which is beyond the scope
of this paper. Thus (35) and (39) can be used for quite a
number of stationary or rotating condensing systems.
In all cases discussed above (39) provides a good
approximation when applied to the corresponding
cases of film evaporation and free convection, provided
the dimensionless groups Gr and Pr according to (12)
and (9) of [9] are introduced. When the Gr number
is formed with b, (not b as in [9]) (39) turns to

23/16
Nu= 1.£.Gr,,.Pr
3R

4/23
+(0143.Gr,. Pr)”’zo] (49)

@7

(48)

for the cases in which (5) and (20) are valid and to

2 L 23/16
Nuy= [(—.—. Gr,,.Pr>
3 R

4/23
+(0286.Gr,. Pr)“/“’} (50)

when (40) and (41) have to be applied. Corresponding
cases (in any acceleration field) are cooling on the
upper side and heating on the underside of a plate.
With curved walls the presented heat-transfer equations
describe transfer on the convex side.
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TRANSFERT THERMIQUE POUR DES TAMBOURS DE SECHAGE DE PAPIER,
CHAUFFES A LA VAPEUR ET A ROTATION RAPIDE

Résumé—L’épaisseur du film d’un condensat et par conséquent le transfert thermique, dépend de la
méthode d’enlévement du condensat. Remplagant le syphon rotatif conventionnel par un autre stationnaire
avec lailette se déplacant dans une gorge circonférentielle, la perte de pression élevée dans le syphon
rotatif est supprimée tandis que I'épaisseur du film est sensiblement réduite.

On peut obtenir un acroissement plus important du transfert de chaleur en donnant une légére pente
a la surface interne du tambour. Dans le cas ol cette surface conique est circulairement incurvée dans
la direction axiale, on établit des équations pour le calcul des épaisseurs locale et moyenne du film. On
montre que pour un flux thermique uniforme donné, méme avec des courbures trés 1égéres, les coefficients
de transfert du c6té de la vapeur sont plusieurs fois plus grand que ceux sur une surface cylindrique.

Les équations déceloppées sont utiles aussi pour d’autres systémes de condensation ou 'accélération le
long de I'écoulement de condensat est proportionnelle a la longueur d’écoulement. Les équations peuvent

étre appliquées de méme aux cas de I'évaporation en convection libre et en film.

VERBESSERUNG DES WARMEUBERGANGS IN DAMPFBEHEIZTEN
SCHNELL ROTIERENDEN PAPIERTROCKENTROMMELN

Zusammenfassung —Die Kondensatfilmdicke und damit der Wirmeiibergang hingen von der Art der
Kondensatabfuhr ab. Das konventionelle rotierende KondensatabfiuBrohr wird durch ein feststehendes
ersetzt, dessen Miindung in eine umlaufende Sammelrinne hineinragt. Hierdurch wird der hohe
Druckverlust im rotierenden Rohr vermieden und gleichzeitig die Filmdicke etwas verringert.

Eine entscheidende Erhdhung des Wirmeiibergangs kann jedoch dadurch erreicht werden, daB3 die
Innenfliche schwach konisch ausgefithrt wird. Fiir den Fall, daB diese konische Innenwand in axialer
Richtung kreisférmig gekriimmt ist, werden Gleichungen zur Berechnung der ortlichen und mittleren
Filmdicke angegeben. Diese zeigen, daB schon bei sehr schwachen Kriimmungen der Wirmeiibergangs-
koeffizient innen gegeniiber dem zylindrischen Fall bei praktisch konstantem WirmefluB vervielfacht
werden kann.

Die entwickelten Gleichungen sind auch brauchbar fiir andere Kondensationsvorginge, bei denen
die Beschleunigung in KondensatfluBirichtung proportional dem Stromungsweg ist. Die Gleichungen

sind auch fiir entsprechende Fille von freier Konvektion und Filmverdampfung anwendbar.

MHTEHCU®PUKALNA TEMNJIOOBMEHA B HATPEBAEMbIX NMAPOM CKOPOCTHbIX
BAPABAHAX /11 CYIIKHU BYMATHU

Annortauns — TonwmnHa MeHKH KOHAeHcaTa M, CNeA0BATENbLHO, TEMIONEPEHOC 3aBHCAT OT cnocoba
yaaneHus kKoHaeHcata. 3ameHa oObiMHOTO BpalLaowerocst cHpoHa ¢ KOHIEHCATOM HEIOABHKHbIM
CHPOHOM C HAKOHEYHHKOM, KOTOPbIit ABMXKETCS B KaHABKE HA BHYTPEHHeH ITOBEepXHOCTU 6apabaHa,
MIO3BOJIKNA YCTPaHWUTL OOMLILOI Mepernan JaBleHUs MPH HEKOTOPOM CHUXEHHHM TOMLLMHBI ITIEHKH.

Borniee 3HayuTebHOE YBEMMYEHHE TEIJIONIEPEHOCA MOXHO TMOJYYUTh, €CTH BHYTPEHHE MOoBEpX-
HocTu Gapabana npunath HeGosibLIOIH HaknoH. TIpeacTaBieHbl ypaBHEHHS 18 pacyéTa NoKanbHOH
M cpenHell TONWMHLI MAEHKH A1A Cllyyas, KOTAa KOHWYECKAs MOBEPXHOCTh PACHIONAraeTcs B OCEBOM
HanpasaeHuy 6apabGana. DTH ypaBHEHHS MOKa3biBAIOT, YTO Ui TPeByemMOro OOHOPOAHOTO TeIlIo-
BOrO MOTOKAa AAXe NMPH OueHb HeBGOMBILON KOHYCHOCTH KOIMbHLUHEHTD! TEMIONEPEHOCA CO CTOPOHBI
napa MOTyT yBEJIMMHTLCS B HECKONIBKO Pa3 B CPABHEHHH C TEIIOOOGMEHHOM B cilydYae LUIMTMHALHYECKON
NOBEPXHOCTH.

MonyueHHble ypaBHEHHs MOTYT ObiTh MPUMEHEHbI K APYTMM CHCTEMAaM C KOHAEHCATOM, KOraa
YCKOpeHHe BIOJIb HaNpas/IeHHA MOTOKA KOHEHCATA NPONOPUHOHANILHO MUIMHE OTOKA. DTH ypaBHe-
HHA MOTyT ObiTb TaKXe MPHUMEHEHbI A COOTBETCTBYIOLUMX CiTydyaeB cBOGOOHOH KOHBEKIIMH H

UCIIAPEHUS TIJIEHKH.



